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Relativistic treatment of inertial spin effects
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In memory of the late Feza G̈ursey
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Abstract. A relativistic spin operator for Dirac particles is identified and it is shown that
a coupling of spin to angular velocity arises in the relativistic case, just as Mashhoon had
speculated, and Hehl and Ni had demonstrated, in the non-relativistic case.

1. Introduction

It has been argued by Mashhoon [1] that there may exist a coupling of intrinsic spin with
rotation, in analogy with the coupling of orbital angular momentum with rotation, which
is the basis of the Sagnac effect. This new effect should, in principle, be observable in
neutron interferometry and Mashhoon has outlined an experiment which could detect it.

The theoretical motivation offered by Mashhoon for this idea was rather general. Hehl
and Ni, however, put it on a firmer footing by analysing the Dirac equation in a non-
inertial frame of reference [2] (one subject to both acceleration and rotation) and in the
non-relativistic limit of the Dirac Hamiltonian found the Mashhoon term, proportional to
σ ·ω, denoting coupling of intrinsic spin to angular velocity. The purpose of this paper is to
point out that the Dirac Hamiltonian actually yields a term of the formX · ω, whereX is
a relativistic spin operator; there is then a spin-angular velocity coupling at all energies and
not just in the non-relativistic limit. In this limit, of course,X becomesσ/2, as expected.

The identification of a relativistic spin operator was a problem which received some
attention in the 1960s and it turns out thatX is in essence the Foldy–Wouthuysen ‘mean
spin operator’ [3], as was first pointed out by Gürsey [4]. In fact, in their analysis referred
to earlier, Hehl and Ni perform a Foldy–Wouthuysen (FW) transformation but treat this
simply as a high grade way of taking a non-relativistic approximation. This is not to give
the FW transformation its proper due. It is in fact valid at all energies; what it does is
to separate the positive and negative energy sectors of the Dirac field. This is of course a
sensible step to take prior to taking a non-relativistic approximation, but the validity of the
FW transformation is not limited to this regime.

2. Mashhoon term–non-relativistic form

Hehl and Ni [2] write down the Dirac equation in a reference frame subjected both to
accelerationa and to rotationω. Expressing this in the form i¯h∂ψ/∂t = Hψ they find

H = βmc2+O+ E
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O= cα · p+ 1

2c
[(a · r)(p · α)+ (p · α)(a · r)]

E= βm(a · r)− ω · (L+ S). (2.1)

It is the presence of the ‘odd’ term O, coupling the large and small components of the
Dirac spinor, which necessitates an FW transformation. The Mashhoon termω · S, with
S = (h̄/2)σ , appears in E. After three FW transformations the resulting Hamiltonian, in
the non-relativistic approximation, is

H = βmc2+ β

2m
p2+ βm(a · r)+ β

2mc2
p(a · r) · p− ω · (L+ S)

+ h̄

4mc2
σ · (a× p)+ higher-order terms. (2.2)

It is easily seen from (2.1) and (2.2) that in the case of a frame subjected to rotation but
not acceleration (a = 0), the Mashhoon term(h̄/2)σ · ω is present. In the non-relativistic
limit this is correctly interpreted as a coupling of spin with angular velocity, since the spin
operator in this limit is(h̄/2)σ ×1 (a 4×4 matrix,1 being the unit 2×2 matrix). However,
the question of whether a spin-angular velocity coupling exists in the general case is left
open.

It will be recalled that one of the original motivations of Foldy and Wouthuysen to look
for a recasting of the Dirac equation was the fact that the free Dirac Hamiltonian (in an
inertial frame)

H = βmc2+ cα · p (2.3)

does not commute withσ , hence if the spin operator is proportional toσ , then spin is not
a constant of motion. One of the key results of Foldy and Wouthuysen was to find what
they called a ‘mean spin operator’

X(p) = m

2E
σ + σ · p

2E(E +m)p+
i

2E
γ 5γ 0σ × p (2.4)

a complicated and nonlinear function ofp which reduces to1
2σ in the limit p → 0. X

commutes with H and so corresponds to a conserved spin operator. The question we are
faced with is the search for a relativistically covariant spin operator. This is the subject of
the next section, where it is shown that the wanted operator is in fact the mean spin operator
(2.4).

3. Covariant spin operator

A covariant operator is one that transforms covariantly under the homogeneous Lorentz
group (HLG). The search for this operator cannot be separated from a consideration of
basis states for representations of the group. There are two fundamental inequivalent
representations of HLG

( 1
2, 0):ϕR→ exp{(i/2)σ · (θ − iλ)}ϕR

(0, 1
2):ϕL → exp{(i/2)σ · (θ + iλ)}ϕL (3.1)

see, for example [5, 6]. The statesϕL andϕR are so-called left- and right-handed 2-spinors,
the three parametersθ correspond to a general rotation, the three parametersλ to a general
‘pure’ Lorentz transformation (Lorentz boost), andσ are of course the Pauli spin matrices.
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Under a Lorentz boost (θ = 0) from the rest framep = 0, left- and right-spinors with
momentump may be written down on observing thatλ = cosh−1 γ .

ϕ′R(p) =
E +m+ σ · p
[2m(E +m)]1/2

ϕR(0) (3.2)

ϕ′L(p) =
E +m− σ · p
[2m(E +m)]1/2

ϕL(0). (3.3)

Defining the 2× 2 matrix

P = E + σ · p (3.4)

it is easily seen that equations (3.2) and (3.3) may be cast in the form

ϕ′R(p) =
(

P
m

)1/2

ϕR(0) (3.5)

ϕ′L(p) =
(

P
m

)−1/2

ϕL(0). (3.6)

A general Lorentz transformation3µ
ν (which includes rotations as well as boosts) takes a

momentumpµ into p
′µ = 3µ

ν p
ν . Corresponding to3, which relatesp andp′, there is a

2× 2 matrix L which relatesP andP′. Since, from (3.4), detP = m2, a Lorentz invariant,
it is clear that we can put [7]

P′ = LPL † (3.7)

with

detL = 1. (3.8)

We then have, under the action of this transformation

ϕ′R(p
′) = LϕR(p) (3.9)

which, combined with (3.5) and (3.7), gives

ϕ′R(p
′) =

(
P′

m

)1/2

ϕ′R(0) = LϕR(p) = L
(

P
m

)1/2

ϕR(0)

ϕ′R(0) =
(

P′

m

)−1/2

L
(

P
m

)1/2

ϕR(0) ≡ UϕR(0). (3.10)

The matrixU is unitary

U†U =
(

P
m

)1/2

L†
(

P′

m

)−1/2(P′

m

)−1/2

L
(

P
m

)1/2

= P1/2L†(P′)−1LP1/2 = P1/2P−1P1/2 = 1

where (3.7) has been used; and therefore corresponds torotations, i.e. belongs to
SU(2). Equation (3.10) is, in fact, Wigner’s ‘little group’ representation of the Poincaré
(inhomogeneous Lorentz) group, here portrayed as simply a representation of HLG. The
realization that this step could be taken to generate a ‘new’ representation of HLG seems
to date back to the work of Shaw [8].

The salient point about Wigner’s enlargement of the homogeneous Lorentz group to
the inhomogeneous (Poincaré) group [9] is that the two Casimir operators of the Poincaré
group are, in essence, mass and spin, the quantities providing kinematic ‘labels’ for quantum
systems. The ‘little group’ of the Poincaré group, defined to leave the 4-momentum of a
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state unchanged, provides the definition of spin. In the case of states with timelike momenta
the little group isSU(2), as seen above.

The transformation law (3.10) certainly provides a representation of the Lorentz
group, but it is a complicated one; the matrixU depends on the momentump. The
representation (3.10) is not covariant, whereas the representation (3.5) is. With this in mind
we now proceed to find the covariant spin operator. In the zero-momentum limit it isσ/2:
this is in the basisϕR(0). In the basis (see (3.5))

ϕR(p) =
(

P
m

)1/2

ϕR(0) ≡ V ϕR(0) (3.11)

it is

V −1σ

2
V = 1

2m(E +m)(E +m− σ · p)
σ

2
(E +m+ σ · p). (3.12)

We now enlarge to a four-dimensional basis

ϕ(p) =
(
ϕR(p)

ϕL(p)

)
= 1

[2m(E +m)]1/2

(
E +m+ σ · p 0

0 E +m− σ · p
)(

ϕR(0)
ϕL(0)

)
= 1

[2m(E +m)]1/2
(E +m+ γ5σ · p)ϕ(0). (3.13)

Using the relationsγ5σ
i = αi = γ 0γ i = −γ iγ 0 it follows that

γ5σ
i

(
1+ γ 0

2

)
= −γ i

(
1+ γ 0

2

)
and thus restricted topositive energy states, we have

ϕ(+)(p) = 1

[2m(E +m)]1/2
(E +m+ γ5σ · p)ϕ(+)(0)

= 1

[2m(E +m)]1/2
(E +m− γ · p)ϕ(+)(0) =

[
E

m

]1/2

U(p)ϕ(+)(0) (3.14)

where

U(p) = 1

[2E(E +m)]1/2
(E +m− γ · p) (3.15)

is a unitary operator. It is in fact the Foldy–Wouthuysen operator [3]. In the basisϕ(+)(0)
the spin operator isσ/2, so in the basisϕ(+)(p) it is

X = U †(p)σ
2
U(p) = 1

2E(E +m)(E +m+ γ · p)
σ

2
(E +m− γ · p)

= m

E

σ

2
+ σ · p

2E(E +m)p+
i

2E
γ 5γ 0σ × p (3.16)

which is the Foldy–Wouthuysenmean spin operator(2.4).
We conclude that the relativistic spin operator is the same as the FW mean spin operator,

when applied to the spectrum ofpositive energy states. This observation was first made by
Gürsey [4].
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4. Relativistic Mashhoon term

Reverting to the original problem, the Dirac Hamiltonian in a frame rotating with angular
velocity ω is, from (2.1),

H = γ 0mc2+ cα · p− ω · (L+ S) (4.1)

with S = σ/2. This Hamiltonian suffers from the problems highlighted by Foldy and
Wouthuysen; that the eigenvalues of the velocity operator are (in the absence of notation)±c
and that spin is not conserved. These problems are resolved on converting the Hamiltonian
to block diagonal form and projecting out the positive energy states. Theexact form of the
Foldy–Wouthuysen (as distinct from the approximate one used by Hehl and Ni) is given by
equation (3.15). This transformation has the effect not only of changing the spin operator
S into X, given by (3.16), but also of changing the position operatorr into the ‘mean
position operator’R [3] and hence the orbital angular monentumL into the ‘mean orbital
angular momentum’M = R× p, so that the resulting Hamiltonian is

H ′ = γ 0E − ω · (M +X). (4.2)

The last term in (4.2) is the relativistic Mashhoon term.

5. Conclusion

The coupling of spin to angular velocity in a rotating frame has been shown, in the case of
spin-1

2 particles, to have a formulation consistent with relativity. The relevant relativistic
spin operator is essentially the Foldy–Wouthuysen mean spin operator.

Dedication

This paper is dedicated to the memory of Feza Gürsey, under whose guidance the author
was made familiar with the problem of relativistic spin operators in the 1960s.
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